Stress-activated protein kinases and transcription factors are crucial for surviving exposure to cadmium and other environmental toxicants, but their effects on the proteome remain largely unexplored. In this study, isobaric tag for relative and absolute quantitation reveals that cadmium stress triggers rapid proteome remodeling in the fission yeast Schizosaccharomyces pombe. Spc1/Sty1, a mitogen/stress-activated protein kinase homologous to human p38 and Saccharomyces cerevisiae Hog1, controls many of these changes, including enzymes of the oxidative phase of the pentose phosphate pathway and trehalose metabolism. Genetic studies indicate that control of carbohydrate metabolism by Spc1 is required for cadmium tolerance. The bZIP transcription factor Zip1, which is functionally related to human Nrf2 and S. cerevisiae Met4, has a smaller effect on cadmium-induced proteome remodeling, but it is required for production of key proteins involved in sulfur metabolism, which are essential for cadmium resistance. These studies reveal how Spc1 and Zip1 independently reshape the proteome to modulate cellular defense mechanisms against the toxic effects of cadmium.
Cadmium-induced proteome remodeling regulated by Spc1/Sty1 and Zip1 in fission yeast.
镉诱导的蛋白质组重塑受裂殖酵母中 Spc1/Sty1 和 Zip1 的调控
阅读:3
作者:Guo Lan, Ghassemian Majid, Komives Elizabeth A, Russell Paul
| 期刊: | Toxicological Sciences | 影响因子: | 4.100 |
| 时间: | 2012 | 起止号: | 2012 Sep;129(1):200-12 |
| doi: | 10.1093/toxsci/kfs179 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
