Efficient messenger ribonucleic acid (mRNA) delivery to the retina remains challenging. This study investigated the effects of various polyethylene glycol (PEG) derivatives on the stability and uptake of cationic lipid-based mRNA lipoplexes in vitro and assessed the delivery of selected formulations to the canine retina. We present an optimized workflow for formulating mRNA lipoplexes in pure water, achieving high encapsulation efficiency. PEGylation enhanced stability of lipoplexes, particularly with PEG-DMG or hyaluronan conjugated to PEG-DPPE (HA-PEG-DPPE), maintaining size and zeta potential for 48âhours. RNA in situ hybridization (RNA-ISH) confirmed efficient internalization of PEGylated mRNA lipoplexes by cultured RAW264.7 and ARPE19 cells, though corresponding protein expression varied between cell lines. Analysis at 24âhours post-intravitreal injection of PEG-DMG- and HA-PEG-DPPE-stabilized enhanced green fluorescent protein (eGFP) mRNA lipoplexes revealed limited mRNA accumulation in inner retinal layers. In contrast, 24âhours after their subretinal administration, eGFP mRNA was detected in all retinal cell types, including photoreceptors, with accumulation comparable to endogenous rhodopsin (RHO) mRNA levels. eGFP protein expression, though, was limited to the retinal pigment epithelium (RPE). At 72âhours post-subretinal delivery, eGFP mRNA and protein persisted in the RPE. However, a marked reduction in eGFP levels was seen in other retinal layers, displaying a patchy pattern. Similarly, eGFP protein exhibited a patchy distribution across retinal layers outside the RPE. Furthermore, distinct differences in the cell types expressing the eGFP protein were observed between the two PEGylated mRNA lipoplex formulations. The data suggest that transfection efficiency in retinal cells is influenced by both intracellular processing of mRNA lipoplexes and their uptake, with the former playing a predominant role.
Impact of PEGylation and hyaluronan functionalization on lipoplex-mediated mRNA delivery to the canine retina.
PEG化和透明质酸功能化对脂质体介导的mRNA递送至犬视网膜的影响
阅读:13
作者:Appelbaum Tatyana, Smith David A, Takahashi Kei, Kwok Jennifer C, Sorenson Hannah, Beltran William A
| 期刊: | Drug Delivery | 影响因子: | 8.100 |
| 时间: | 2025 | 起止号: | 2025 Dec;32(1):2544688 |
| doi: | 10.1080/10717544.2025.2544688 | 种属: | Canine |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
