Programming Aliphatic Polyester Degradation by Engineered Bacterial Spores.

利用工程改造的细菌孢子对脂肪族聚酯进行降解编程

阅读:9
作者:Cui Ziyu, Kawada Masamu, Hui Yue, Sim Seunghyun
Enzymatic degradation of plastics is a sustainable approach to address the growing issue of plastic accumulation. Here, we demonstrate the degradation of aliphatic polyesters using enzyme-displaying bacterial spores and the fabrication of self-degradable spore-containing plastics. The degradation proceeds without nutrient-dependent spore germination into living cells. Engineered spores completely degrade aliphatic polyesters into small molecules, retain activity through multiple cycles, and regain full activity through germination and sporulation. We also found that the interplay between the glass transition temperature and melting temperature of polyester substrates affects heterogeneous biocatalytic degradation by engineered spores. Directly incorporating spores into polyesters results in robust materials that are completely degradable. Our study offers a straightforward and sustainable biocatalytic approach to plastic degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。