The accumulation of amyloid beta-protein (Abeta) in brain regions serving memory and cognition is a central pathogenic feature of Alzheimer's disease (AD). We have shown that small soluble oligomers of human Abeta that are naturally secreted by cultured cells inhibit hippocampal long-term potentiation (LTP) in vitro and in vivo and transiently impair the recall of a complex learned behaviour in rats. These results support the hypothesis that diffusible oligomers of Abeta initiate a synaptic dysfunction that may be an early event in AD. We now report detailed electrophysiological analyses that define conditions under which acute application of soluble Abeta inhibits hippocampal synaptic plasticity in wild-type mice. To ascertain which Abeta assemblies contribute to the impairment of LTP, we fractionated oligomers by size-exclusion chromatography and found that Abeta trimers fully inhibit LTP, whereas dimers and tetramers have an intermediate potency. Natural Abeta oligomers are sensitive to heat denaturation, primarily inhibit the induction phase of LTP, and cause a sustained impairment of LTP even after extensive washout. We observed no effects of Abeta oligomers on presynaptic vesicle release. LTP in juvenile mice is resistant to the effects of Abeta oligomers, as is brain-derived-neurotrophic-factor-induced LTP in adult hippocampus. We conclude that specific assemblies, particularly timers, of naturally secreted Abeta oligomers are potent and selective inhibitors of certain forms of hippocampal LTP.
Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers.
分泌型β-淀粉样蛋白寡聚体对海马突触可塑性的影响:三聚体的强大作用
阅读:3
作者:Townsend Matthew, Shankar Ganesh M, Mehta Tapan, Walsh Dominic M, Selkoe Dennis J
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2006 | 起止号: | 2006 Apr 15; 572(Pt 2):477-92 |
| doi: | 10.1113/jphysiol.2005.103754 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
