Dormant intracellular Salmonella enterica serovar Typhimurium discriminates among Salmonella pathogenicity island 2 effectors to persist inside fibroblasts.

休眠的细胞内鼠伤寒沙门氏菌能够区分沙门氏菌致病岛 2 效应蛋白,从而在成纤维细胞内持续存在

阅读:3
作者:Núñez-Hernández Cristina, Alonso Ana, Pucciarelli M Graciela, Casadesús Josep, García-del Portillo Francisco
Salmonella enterica uses effector proteins delivered by type III secretion systems (TTSS) to colonize eukaryotic cells. Recent in vivo studies have shown that intracellular bacteria activate the TTSS encoded by Salmonella pathogenicity island-2 (SPI-2) to restrain growth inside phagocytes. Growth attenuation is also observed in vivo in bacteria colonizing nonphagocytic stromal cells of the intestinal lamina propria and in cultured fibroblasts. SPI-2 is required for survival of nongrowing bacteria persisting inside fibroblasts, but its induction mode and the effectors involved remain unknown. Here, we show that nongrowing dormant intracellular bacteria use the two-component system OmpR-EnvZ to induce SPI-2 expression and the PhoP-PhoQ system to regulate the time at which induction takes place, 2 h postentry. Dormant bacteria were shown to discriminate the usage of SPI-2 effectors. Among the effectors tested, SseF, SseG, and SseJ were required for survival, while others, such as SifA and SifB, were not. SifA and SifB dispensability correlated with the inability of intracellular bacteria to secrete these effectors even when overexpressed. Conversely, SseJ overproduction resulted in augmented secretion and exacerbated bacterial growth. Dormant bacteria produced other effectors, such as PipB and PipB2, that, unlike what was reported for epithelial cells, did not to traffic outside the phagosomal compartment. Therefore, permissiveness for secreting only a subset of SPI-2 effectors may be instrumental for dormancy. We propose that the S. enterica serovar Typhimurium nonproliferative intracellular lifestyle is sustained by selection of SPI-2 effectors that are produced in tightly defined amounts and delivered to phagosome-confined locations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。