De Novo Variant in GBX1 Gene Associated With Developmental Delay and Focal Epilepsy.

GBX1基因的新生变异与发育迟缓和局灶性癫痫相关

阅读:6
作者:Zhang Bingbing, Li Xiaohua, Qian Xiao, Tang Jihong
BACKGROUND: The gastrulation brain homeobox (Gbx) family, including GBX1 and GBX2, is crucial for hindbrain development and contributes to the morphogenesis of the midbrain-hindbrain boundary (MHB). While the role of the GBX1 gene in the development of the human nervous system remains to be elucidated, its variant in humans has not previously been reported to be associated with disease. METHODS: The patient presenting with sleep panic attacks underwent comprehensive clinical assessments, including electroencephalograph (EEG), magnetic resonance imaging (MRI), and genetic testing through whole exome sequencing (WES). Zebrafish models were generated through gbx1 gene crispants to investigate the functional impact of identified genetic variants. RESULTS: The patient in our study was diagnosed with focal epilepsy through long-range EEG. WES revealed a de novo GBX1 gene variant [NM_001098834.3: c.910C>T (p.Gln304*)]. In zebrafish larvae with gbx1 gene disruption, significant abnormalities were observed in the morphology of the interocular area. Furthermore, these larvae exhibited an increased susceptibility to neurophysiological abnormalities associated with epileptiform activity. CONCLUSION: Our study is the first to identify an association between the GBX1 gene variant and focal epilepsy. The zebrafish models confirmed the presence of related phenotypes in the gbx1-Cas9. These findings underscore the significance of the GBX1 gene in neurological function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。