The intestinal microbiome forms a dynamic ecosystem whose balanced composition and functioning are essential for maintaining overall gut health and well-being in living organisms. In broilers, dysbiosis disrupts the microbiota-host balance, often without obvious clinical symptoms but with intestinal inflammation, and leads to impaired animal performance. This study aimed to identify host blood-based protein biomarkers that indicate intestinal inflammation and intestinal barrier dysfunction. Using mass spectrometry-based proteomics, blood plasma samples from broilers derived from an in vivo dysbiosis model were analyzed and compared to healthy controls. Microscopic histologic changes in the gut (shortened villi, increased crypt depth) were observed in the duodenal and jejunal tissue of 25-days old challenged birds. Elevated levels of permeability markers faecal ovotransferrin and serum iohexol additionally indicated increased intestinal leakage in the challenged group. The blood plasma proteome analysis enabled quantification of 388 proteins, 25 of which were significantly different between the tested groups. The challenge was marked by activation of immune and signaling pathways, and response to bacteria, while proteins related to cellular physiology, cell-cell communication, and extracellular matrix (ECM) processes were suppressed. Protein-protein interaction analysis revealed two clusters of downregulated proteins involved in ECM organization and cell adhesion. Intestinal dysbiosis in broilers demonstrated that the host prioritizes immune defense over structural maintenance. The activation of immune processes and suppression of ECM pathways highlight potential biomarkers and therapeutic targets. Data are available via ProteomeXchange with identifier PXD056546.
Proteomic profiling of dysbiosis-challenged broilers reveals potential blood biomarkers for intestinal health.
对患有肠道菌群失调的肉鸡进行蛋白质组学分析,揭示了肠道健康的潜在血液生物标志物
阅读:1
作者:Tretiak Svitlana, Mendes Maia Teresa, Ducatelle Richard, Cherlet Marc, Rijsselaere Tom, Van Immerseel Filip, Impens Francis, Antonissen Gunther
| 期刊: | Veterinary Research | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 8; 56(1):143 |
| doi: | 10.1186/s13567-025-01570-4 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
