Birth weight is reduced and the risk of preeclampsia is increased in human high altitude pregnancies. There has been little work to determine whether hypoxia acts directly to reduce fetal growth (e.g. reduced blood flow and oxygen delivery), or via changes in functional capacities such as nutrient transport. We therefore investigated the expression of a primary nutrient transporter, the GLUT1 glucose transporter and two in vitro markers of hypoxia (erythropoietin receptor, EPO-R, and transferrin receptor, TfR) in the syncytial microvillous (MVM) and basal membrane fractions (BMF) of 13 high (3100 m) and 12 low (1600 m) altitude placentas from normal term pregnancies. Birth weight was lower at 3100 m than at 1600 m despite similar gestational age, but none of the infants were clinically designated as fetal growth restriction. EPO-R, TfR and GLUT1 were examined by immunoblotting and maternal circulating erythropoietin and transferrin by ELISA. EPO-R was greater on the MVM (+75%) and BMF (+25%) at 3100 m. TfR was 32% lower on the MVM at 3100 m. GLUT1 was 40% lower in the BMF at 3100 m. Circulating EPO was greater at high altitude, while transferrin was similar, and neither correlated with their membrane receptors. BMF GLUT1 was positively correlated with birth weight at high, but not low altitude. In this in vivo model of chronic placental hypoxia, syncytial EPO-R increased as expected, while nutrient transporters decreased, opposite to what has been observed in vitro. Therefore, hypoxia acts to reduce fetal growth not simply by reducing oxygen delivery, but also by decreasing the density of nutrient transporters.
Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters.
体内慢性缺氧对人胎盘葡萄糖转运蛋白表达的影响
阅读:3
作者:Zamudio S, Baumann M U, Illsley N P
| 期刊: | Placenta | 影响因子: | 2.500 |
| 时间: | 2006 | 起止号: | 2006 Jan;27(1):49-55 |
| doi: | 10.1016/j.placenta.2004.12.010 | 种属: | Human |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
