Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using N(Ï)-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7â±â2.0 and females = 26.1â±â1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2â±â3.3, P < 0.01; females = 6.8â±â1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.
Myoendothelial feedback in mouse mesenteric resistance arteries is similar between the sexes, dependent on nitric oxide synthase, and independent of TPRV4.
小鼠肠系膜阻力动脉的肌内皮反馈在两性之间相似,依赖于一氧化氮合酶,并且与 TPRV4 无关
阅读:3
作者:Looft-Wilson Robin C, Stechmann Jacob K, Milenski Katherine G, Shah Vishakha M, Kulkarni Preetika G, Arif Arusha B, Guiot Tanner, Beinlich Nancy Marie C, Dos Santos Christian A, Rice Spencer K
| 期刊: | American Journal of Physiology-Heart and Circulatory Physiology | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Jan 1; 326(1):H190-H202 |
| doi: | 10.1152/ajpheart.00170.2023 | 种属: | Mouse |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
