The medial prefrontal cortex plays a key role in cocaine addiction. However, how chronic cocaine exposure affects cortical networks remains unclear. Most studies have focused on layer 5 pyramidal neurons (the circuit output), while the response of local GABAergic interneurons to cocaine remains poorly understood. Here, we recorded from fast-spiking interneurons (FS-IN) after repeated cocaine exposure and found altered membrane excitability. After cocaine withdrawal, FS-IN showed an increase in the number of spikes evoked by positive current injection, increased input resistance, and decreased hyperpolarization-activated current. We also observed a reduction in miniature excitatory postsynaptic currents, whereas miniature inhibitory postsynaptic current activity was unaffected. We show that, in animals with cocaine history, dopamine receptor D(2) activation is less effective in increasing FS-IN intrinsic excitability. Interestingly, these alterations are only observed 1 wk or more after the last cocaine exposure. This suggests that the dampening of D(2)-receptor-mediated response may be a compensatory mechanism to rein down the excitability of FS-IN.
Repeated cocaine exposure increases fast-spiking interneuron excitability in the rat medial prefrontal cortex.
反复接触可卡因会增加大鼠内侧前额叶皮层快速放电中间神经元的兴奋性
阅读:5
作者:Campanac Emilie, Hoffman Dax A
| 期刊: | Journal of Neurophysiology | 影响因子: | 2.100 |
| 时间: | 2013 | 起止号: | 2013 Jun;109(11):2781-92 |
| doi: | 10.1152/jn.00596.2012 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
