Effects of chemosynthetic choline plasmalogens on gonadotropin secretion from bovine gonadotrophs.

化学合成胆碱缩醛磷脂对牛促性腺激素细胞促性腺激素分泌的影响

阅读:13
作者:Kadokawa Hiroya, Niyonzima Yvan Bienvenu, Hirokawa Takatsugu, Yoshino Ryunosuke
Ethanolamine plasmalogens (EPls) and choline plasmalogens (CPls), unique glycerophospholipids may play important roles in milk production and reproduction in postpartum dairy cows. While CPls are more abundant in bovine blood, EPls are predominant in the brain. Brain EPls are the only recognized ligands of G protein-coupled receptor 61 (GPR61), a receptor that co-localizes with GnRH receptors on gonadotrophs. We hypothesized that chemosynthetic CPls stimulate gonadotropin secretion from bovine gonadotrophs, similar to the reported effects of chemosynthetic EPls. Anterior pituitary cells from healthy, post-pubertal heifers, were cultured for 3.5 days and then treated with increasing concentrations (0, 0.7, 7, 70, or 700 pM) of EPl with vinyl-ether-bonded stearic acid and ester-bonded oleic acid (C18:0-C18:1EPl) as a positive control, or CPls with vinyl-ether-bonded stearic acid and ester-bonded oleic acid (C18:0-C18:1CPl), arachidonic acid (C18:0-C20:4CPl), or docosahexaenoic acid (C18:0-C22:6CPl). After 2 h, the medium samples were harvested for FSH and LH assays. C18:0-C18:1EPl (7-700 pM) stimulated basal FSH and LH secretion (P < 0.01). None of the tested CPl concentrations stimulated LH secretion. Only 700 pM of C18:0-C18:1CPl, but not lower concentrations, stimulated FSH secretion (P < 0.05), an effect that was inhibited by a SMAD pathway inhibitor. However, both C18:0-C18:1CPl and C18:0-C20:4CPl synergized with GnRH to stimulate FSH secretion. In silico molecular-docking simulations using the deep-learning algorithm ColabFold revealed that CPls bind to the three-dimensional structural model of GPR61. In conclusion, C18:0-C20:4CPl stimulated FSH secretion exclusively in the presence of GnRH, whereas C18:0-C18:1CPl weakly stimulated FSH secretion and showed potential interaction with the GnRH signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。