Using logical constraints to validate statistical information about disease outbreaks in collaborative knowledge graphs: the case of COVID-19 epidemiology in Wikidata.

利用逻辑约束验证协作知识图谱中有关疾病爆发的统计信息:以 Wikidata 中的 COVID-19 流行病学为例

阅读:4
作者:Turki Houcemeddine, Jemielniak Dariusz, Hadj Taieb Mohamed A, Labra Gayo Jose E, Ben Aouicha Mohamed, Banat Mus'ab, Shafee Thomas, Prud'hommeaux Eric, Lubiana Tiago, Das Diptanshu, Mietchen Daniel
Urgent global research demands real-time dissemination of precise data. Wikidata, a collaborative and openly licensed knowledge graph available in RDF format, provides an ideal forum for exchanging structured data that can be verified and consolidated using validation schemas and bot edits. In this research article, we catalog an automatable task set necessary to assess and validate the portion of Wikidata relating to the COVID-19 epidemiology. These tasks assess statistical data and are implemented in SPARQL, a query language for semantic databases. We demonstrate the efficiency of our methods for evaluating structured non-relational information on COVID-19 in Wikidata, and its applicability in collaborative ontologies and knowledge graphs more broadly. We show the advantages and limitations of our proposed approach by comparing it to the features of other methods for the validation of linked web data as revealed by previous research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。