1. Using a semi-intact epithelial preparation we examined the Ca(2+)-activated K(+) (K(Ca)) currents of frog (Rana pipiens) saccular hair cells. After blocking voltage-dependent K(+) (K(V)) currents with 4-aminopyridine (4-AP) an outward current containing inactivating (I(transient)) and non-inactivating (I(steady)) components remained. 2. The contribution of each varied greatly from cell to cell, with I(transient) contributing from 14 to 90 % of the total outward current. Inactivation of I(transient) was rapid (tau approximately 2-3 ms) and occurred within the physiological range of membrane potentials (V(1/2) = -63 mV). Recovery from inactivation was also rapid (tau approximately 10 ms). 3. Suppression of both I(transient) and I(steady) by depolarizations that approached the Ca(2+) equilibrium potential and by treatments that blocked Ca(2+) influx (application Ca(2+)-free saline or Cd(2+)), suggest both are Ca(2+) dependent. Both were blocked by iberiotoxin, a specific blocker of large-conductance K(Ca) channels (BK), but not by apamin, a specific blocker of small-conductance K(Ca) channels. 4. Ensemble-variance analysis showed that I(transient) and I(steady) flow through two distinct populations of channels, both of which have a large single-channel conductance (~100 pS in non-symmetrical conditions). Together, these data indicate that both I(transient) and I(steady) are carried through BK channels, one of which undergoes rapid inactivation while the other does not. 5. Inactivation of I(transient) could be removed by extracellular papain and could later be restored by intracellular application of the 'ball' domain of the auxiliary subunit (beta2) thought to mediate BK channel inactivation in rat chromaffin cells. We hypothesize that I(transient) results from the association of a similar beta subunit with some of the BK channels and that papain removes inactivation by cleaving extracellular sites required for this association.
Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells.
蛙球囊毛细胞中快速失活和非失活钙激活钾电流
阅读:4
作者:Armstrong C E, Roberts W M
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2001 | 起止号: | 2001 Oct 1; 536(Pt 1):49-65 |
| doi: | 10.1111/j.1469-7793.2001.00049.x | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
