The role of lipid domain size and protein-lipid interfaces in the thermotropic phase transition of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) bilayers in Nanodiscs was studied using small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and generalized polarization (GP) of the lipophilic probe Laurdan. Nanodiscs are water-soluble, monodisperse, self-assembled lipid bilayers encompassed by a helical membrane scaffold protein (MSP). MSPs of different lengths were used to define the diameter of the Nanodisc lipid bilayer from 76 to 108 A and the number of DPPC molecules from 164 to 335 per discoidal structure. In Nanodiscs of all sizes, the phase transitions were broader and shifted to higher temperatures relative to those observed in vesicle preparations. The size dependences of the transition enthalpies and structural parameters of Nanodiscs reveal the presence of a boundary lipid layer in contact with the scaffold protein encircling the perimeter of the disc. The thickness of this annular layer was estimated to be approximately 15 A, or two lipid molecules. SAXS was used to measure the lateral thermal expansion of Nanodiscs, and a steep decrease of bilayer thickness during the main lipid phase transition was observed. These results provide the basis for the quantitative understanding of cooperative phase transitions in membrane bilayers in confined geometries at the nanoscale.
Thermotropic phase transition in soluble nanoscale lipid bilayers.
可溶性纳米级脂质双层中的热致相变
阅读:4
作者:Denisov Ilia G, McLean Mark A, Shaw Andrew W, Grinkova Yelena V, Sligar Stephen G
| 期刊: | Journal of Physical Chemistry B | 影响因子: | 2.900 |
| 时间: | 2005 | 起止号: | 2005 Aug 18; 109(32):15580-8 |
| doi: | 10.1021/jp051385g | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
