The TGFbeta1/Smad pathway plays a critical role in cholestasis and liver fibrosis. Previous studies show that TGFbeta1, TNFalpha, and insulin inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene transcription and bile acid synthesis in human hepatocytes. In this study, we investigated insulin, TGFbeta1, and TNFalpha regulation of rat Cyp7a1 gene transcription. In contrast to inhibition of human CYP7A1 gene transcription, TGFbeta1 stimulates rat Cyp7a1 reporter activity. Smad3, FoxO1, and HNF4alpha synergistically stimulated rat Cyp7a1 gene transcription. Mutations of the Smad3, FoxO1, or HNF4alpha binding site attenuated the rat Cyp7a1 promoter activity. Furthermore, TNFalpha and cJun attenuated TGFbeta1 stimulation of rat Cyp7a1. Insulin or adenovirus-mediated expression of constitutively active AKT1 inhibited FoxO1 and Smad3 synergy. In streptozotocin-induced diabetic rats, Cyp7a1 mRNA expression levels were induced and insulin attenuated CYP7A1 mRNA levels. Chromatin immunoprecipitation assay showed that FoxO1 binding to Cyp7a1 chromatin was increased in diabetic rat livers and insulin reduced FoxO1 binding. These results suggest a mechanistic basis for induction of Cyp7a1 activity and bile acid synthesis in cholestatic rats and in diabetic rats. The crosstalk of insulin, TGFbeta and TNFalpha signaling pathways may regulate bile acid synthesis and lipid homeostasis in diabetes, fatty liver disease, and liver fibrosis.
TGFbeta1, TNFalpha, and insulin signaling crosstalk in regulation of the rat cholesterol 7alpha-hydroxylase gene expression.
TGFβ1、TNFα和胰岛素信号在调节大鼠胆固醇7α-羟化酶基因表达中的相互作用
阅读:4
作者:Li Tiangang, Ma Huiyan, Chiang John Y L
| 期刊: | Journal of Lipid Research | 影响因子: | 4.100 |
| 时间: | 2008 | 起止号: | 2008 Sep;49(9):1981-9 |
| doi: | 10.1194/jlr.M800140-JLR200 | 种属: | Rat |
| 研究方向: | 信号转导 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
