Synovial fluid mesenchymal stem cell-derived microRNA-127-5p can modulate transforming growth factor-β signaling after in vitro chondrogenic induction.

滑液间充质干细胞衍生的microRNA-127-5p可在体外软骨形成诱导后调节转化生长因子-β信号传导

阅读:6
作者:Semerci Sevimli Tugba, Inan Ulukan, Qomi Ekenel Emilia, Ozgul Cemre, Danaci Cem Ozgur, Cetinkaya Sevval, Ahmadova Zarifa
MicroRNA profiling in human cartilage is necessary for chondrogenesis. The study aimed to compare microRNA 127-5p (miR-127-5p) and TGF-β signaling pathway gene expressions of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and synovial fluid-derived stem cells (hSF-MSCs) after induced chondrogenesis. MSCs induced into chondrogenic differentiation. Alcian Blue and Safranin O staining were performed to determine chondrogenic differentiation. The RT-qPCR determined the expression levels of miR-127-5p and TGF-β signaling pathway genes. miR-127-5p expression was significantly higher in chondrogenic differentiated hSF-MSCs (dhSF-MSCs) (p < 0.05). TGF-β, SMAD2, and SMAD3 expressions were substantially higher in dhSF-MSCs (all p < 0.001), while SMAD4, and ACAN expressions were downregulated (all p < 0.001). No difference was detected between COL1A2 expression levels. This study suggests that miR-127-5p derived from hSF-MSCs may regulate chondrogenesis, thereby inducing the TGF-β pathway activation, and also presents, for the first time, a comparative analysis of the expression of miR-127-5p and the TGF-β signaling pathway genes of hSF-MSCs and hAT-MSCs concerning differences in chondrogenic potential.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。