Comparative pericarp biomechanics and germination physiology of Raphanus raphanistrum and Raphanus pugioniformis indehiscent fruits.

萝卜不开裂果实的果皮生物力学和发芽生理学比较

阅读:5
作者:Steinbrecher Tina, Bhattacharya Samik, Binder Jonathan, Kleemeier Katharina, Przesdzink Felix, Groene Franziska, Jacoblinnert Kyra, Mummenhoff Klaus, Leubner-Metzger Gerhard
BACKGROUND: The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently. METHODS: A multiscale biomechanics and imaging (microscopy, X-ray, finite element stress simulation, puncture force analysis) approach was used to comparatively investigate the indehiscent fruits of R. raphanistrum (global weed), R. pugioniformis (endemic weed) and R. sativus (cultivated radish). RESULTS: The hard pericarp of Raphanus species (Brassicaceae) imposes mechanical dormancy by preventing full phase-II water uptake of the enclosed seeds. The apparently unilocular fruits of Raphanus species develop from two fused valves, pericarp rupture to permit germination is confined to the midvalve regions, and each midvalve region contains a predetermined breaking zone that is biomechanically defined by the internal shape of the seed chambers. Direct biomechanical analysis revealed great variability in within-fruit and between-fruits pericarp resistances. CONCLUSIONS: Variability in pericarp-imposed dormancy provides a bet-hedging strategy to affect soil seed bank persistence and prolong the germinability period.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。