Objective: We developed 3-dimensional spatially resolved gene neighborhood network embedding (3D-spaGNN-E) to find subcellular gene proximity relationships and identify key subcellular motifs in cell-cell communication (CCC). Impact Statement: The pipeline combines 3D imaging-based spatial transcriptomics and graph-based deep learning to identify subcellular motifs. Introduction: Advancements in imaging and experimental technology allow the study of 3D spatially resolved transcriptomics and capture better spatial context than approximating the samples as 2D. However, the third spatial dimension increases the data complexity and requires new analyses. Methods: 3D-spaGNN-E detects single transcripts in 3D cell culture samples and identifies subcellular gene proximity relationships. Then, a graph autoencoder projects the gene proximity relationships into a latent space. We then applied explainability analysis to identify subcellular CCC motifs. Results: We first applied the pipeline to mesenchymal stem cells (MSCs) cultured in hydrogel. After clustering the cells based on the RNA count, we identified cells belonging to the same cluster as homotypic and those belonging to different clusters as heterotypic. We identified changes in local gene proximity near the border between homotypic and heterotypic cells. When applying the pipeline to the MSC-peripheral blood mononuclear cell (PBMC) coculture system, we identified CD4(+) and CD8(+) T cells. Local gene proximity and autoencoder embedding changes can distinguish strong and weak suppression of different immune cells. Lastly, we compared astrocyte-neuron CCC in mouse hypothalamus and cortex by analyzing 3D multiplexed-error-robust fluorescence in situ hybridization (MERFISH) data and identified regional gene proximity differences. Conclusion: 3D-spaGNN-E distinguished distinct CCCs in cell culture and tissue by examining subcellular motifs.
Graph-Based 3-Dimensional Spatial Gene Neighborhood Networks of Single Cells in Gels and Tissues.
基于图的凝胶和组织中单细胞三维空间基因邻域网络
阅读:5
作者:Fang Zhou, Krusen Kelsey, Priest Hannah, Wang Mingshuang, Kim Sungwoong, Sriram Anirudh, Yellanki Ashritha, Singh Ankur, Horwitz Edwin, Coskun Ahmet F
| 期刊: | BME Frontiers | 影响因子: | 7.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 6:0110 |
| doi: | 10.34133/bmef.0110 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
