New Curcumin Analogue (PAC) Inhibits Candida albicans Virulence, Restricts Its Adhesion Potential, and Relieves Oral Epithelial Cell Inflammation and Defense Mechanisms.

新型姜黄素类似物(PAC)抑制白色念珠菌毒力,限制其粘附潜力,并缓解口腔上皮细胞炎症和防御机制

阅读:3
作者:Mezni Ghazoua, Issa Hawraa, Dahdah Manal, Poulin Anaïs, Daïch Adam, Alamri Abdulaziz, Rouabhia Mahmoud, Semlali Abdelhabib
Objectives: The oral cavity hosts one of the most complex microbial communities in the body. A disruption of the balance favors the growth of pathogenic species, contributing to oral diseases. The rise in microbial resistance has limited the effectiveness of conventional treatments, shifting the interest to natural product-based alternatives. Given its superior bioavailability and bioactivity in other models, this study investigates the antifungal potential of a novel curcumin derivative, PAC (3,5-bis(4-hydroxy-3-methoxybenzylidene)-N-methyl-4-piperidone), and studies its impact on host-pathogen dynamics and host defense mechanisms. Methods:Candida albicans was used as the model organism. Viability, growth kinetics, and colony formation were evaluated using optical density, agar culture, and MTT assay. Biofilm formation was assessed through electron microscopy and total sugar quantification. The morphological transition from hyphae to the less virulent blastospore was monitored using an optical microscope. The gene expression of adhesion factors and host defense markers was analyzed using RT-PCR. Results: PAC impairs C. albicans viability and reduces virulence by compromising biofilm formation and ensuring phenotypic transition to a blastospore form. Also, PAC controls C. albicans growth via necrosis/ROS pathways. As a result, PAC appears to repress host-pathogen interaction by downregulating SAPs, EAP1, and HWP1 adhesion genes, thus relieving the need to activate gingival epithelial cell defense mechanisms. This is highlighted by recording baseline levels of IL-6, IL-8, and IL-1β cytokines and antimicrobial β-defensin peptides in the presence of less virulent candida forms. Conclusions: PAC effectively reduces C. albicans virulence by limiting biofilm formation and adhesion while minimizing inflammatory responses. These findings support its potential as a promising therapeutic agent for infectious disease control.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。