The canonical model of tumor suppressor gene (TSG)-mediated oncogenesis posits that loss of both alleles is necessary for inactivation. Here, through allele-specific analysis of sequencing data from 48,179 cancer patients, we define the prevalence, selective pressure for, and functional consequences of biallelic inactivation across TSGs. TSGs largely assort into distinct classes associated with either pan-cancer (Class 1) or lineage-specific (Class 2) patterns of selection for biallelic loss, although some TSGs are predominantly monoallelically inactivated (Class 3/4). We demonstrate that selection for biallelic inactivation can be utilized to identify driver genes in non-canonical contexts, including among variants of unknown significance (VUSs) of several TSGs such as KEAP1. Genomic, functional, and clinical data collectively indicate that KEAP1 VUSs phenocopy established KEAP1 oncogenic alleles and that zygosity, rather than variant classification, is predictive of therapeutic response. TSG zygosity is therefore a fundamental determinant of disease etiology and therapeutic sensitivity.
Pan-cancer analysis of biallelic inactivation in tumor suppressor genes identifies KEAP1 zygosity as a predictive biomarker in lung cancer.
对肿瘤抑制基因双等位基因失活的泛癌分析表明,KEAP1 合子性是肺癌的预测性生物标志物
阅读:25
作者:Zucker Mark, Perry Maria A, Gould Samuel I, Elkrief Arielle, Safonov Anton, Thummalapalli Rohit, Mehine Miika, Chakravarty Debyani, Brannon A Rose, Ladanyi Marc, Razavi Pedram, Donoghue Mark T A, Murciano-Goroff Yonina R, Grigoriadis Kristiana, McGranahan Nicholas, Jamal-Hanjani Mariam, Swanton Charles, Chen Yuan, Shen Ronglai, Chandarlapaty Sarat, Solit David B, Schultz Nikolaus, Berger Michael F, Chang Jason, Schoenfeld Adam J, Sánchez-Rivera Francisco J, Reznik Ed, Bandlamudi Chaitanya
| 期刊: | Cell | 影响因子: | 42.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 6; 188(3):851-867 |
| doi: | 10.1016/j.cell.2024.11.010 | 研究方向: | 肿瘤 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
