Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection.

MS-2噬菌体和大肠杆菌在TiO2光催化消毒中的不同灭活行为

阅读:3
作者:Cho Min, Chung Hyenmi, Choi Wonyong, Yoon Jeyong
Despite a wealth of experimental evidence concerning the efficacy of the biocidal action associated with the TiO(2) photocatalytic reaction, our understanding of the photochemical mechanism of this particular biocidal action remains largely unclear. It is generally accepted that the hydroxyl radical (.OH), which is generated on the surface of UV-illuminated TiO(2), plays the main role. However, our understanding of the exact mode of action of the hydroxyl radical in killing microorganisms is far from complete, and some studies report that other reactive oxygen species (ROS) (H(2)O(2) and O(2).(-), etc.) also play significant roles. In particular, whether hydroxyl radicals remain bound to the surface or diffuse into the solution bulk is under active debate. In order to examine the exact mode of action of ROS in inactivating the microorganism, we tested and compared the levels of photocatalytic inactivation of MS-2 phage and Escherichia coli as representative species of viruses and bacteria, respectively. To compare photocatalytic microbial inactivation with the photocatalytic chemical degradation reaction, para-chlorobenzoic acid, which rapidly reacts with a hydroxyl radical with a diffusion-limited rate, was used as a probe compound. Two different hydroxyl radical scavengers, tert-butanol and methanol, and an activator of the bulk phase hydroxyl radical generation, Fe(2+), were used to investigate their effects on the photocatalytic mode of action of the hydroxyl radical in inactivating the microorganism. The results show that the biocidal modes of action of ROS are very different depending on the specific microorganism involved, although the reason for this is not clear. It seems that MS-2 phage is inactivated mainly by the free hydroxyl radical in the solution bulk but that E. coli is inactivated by both the free and the surface-bound hydroxyl radicals. E. coli might also be inactivated by other ROS, such as O(2).(-) and H(2)O(2), according to the present results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。