Cell-cell communication and extracellular matrix (ECM) organization in a bone microenvironment are essential to replicate the bone microenvironment accurately. In this study, the extracellular matrix (ECM) was emulated by incorporating M13 phages, selected through phage display for displaying engineered peptides that mimic bone matrix proteins, into human osteoblast cultures to develop a three-dimensional bone model (3D BMP-Phage). Comprehensive analysis was performed to investigate: (i) the morphological development of spheroids, assessed by optical microscopy and quantified via fractal dimension analysis using box-counting algorithms; (ii) the biochemical composition of the extracellular matrix, evaluated by Raman spectroscopy; (iii) ECM protein deposition, analyzed through immunofluorescence staining; (iv) matrix mineralization, assessed by Alizarin Red staining and alkaline phosphatase (ALP) activity assay; and (v) osteogenic gene expression, measured by quantitative RT-PCR. The findings demonstrate that the 3D BMP-Phage model, facilitated by a cocktail of bone-mimicking peptides, enhances structural integrity, ECM complexity, mineralization, and osteogenic pathways compared to the control. This novel approach replicates key aspects of the bone microenvironment, providing a valuable platform for advanced physiological and regenerative medicine research under controlled conditions.
Formation of 3D Human Osteoblast Spheroids Incorporating Extracellular Matrix-Mimetic Phage Peptides as a Surrogate Bone Tissue Model.
构建含有细胞外基质模拟噬菌体肽的三维人类成骨细胞球体作为替代骨组织模型
阅读:4
作者:Rizzo Maria Giovanna, Morganti Dario, Smeriglio Antonella, Sciuto Emanuele Luigi, Spata Massimo Orazio, Trombetta Domenico, Fazio Barbara, Guglielmino Salvatore Pietro Paolo, Conoci Sabrina
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Sep 1; 26(17):8482 |
| doi: | 10.3390/ijms26178482 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
