The inhibition of angiogenesis is a crucial therapeutic strategy in cancer treatment, as it limits tumor growth and metastasis. In this study, we investigate the anti-angiogenic potential of a novel htsFLT01/MiRGD nanocomplex, designed to target key angiogenesis markers in cancer. This nanocomplex integrates the anti-angiogenic fusion protein htsFLT01 with the MiRGD peptide to enhance its efficacy. Our findings demonstrate that htsFLT01/MiRGD effectively suppresses angiogenesis both in vitro and in vivo, particularly in breast cancer models. Histological and molecular analyses reveal a significant reduction in blood vessel formation, accompanied by structural changes in tumor tissue. Furthermore, the expression levels of key angiogenesis-related genes, including VEGF, VEGFR, and CD31, are markedly downregulated, highlighting the therapeutic potential of this nanocomplex. Beyond its anti-angiogenic effects, the treatment also induces apoptosis and inhibits tumor cell proliferation, reinforcing its role as a promising targeted therapy for angiogenesis-dependent malignancies. These results underscore the potential of htsFLT01/MiRGD in cancer treatment and pave the way for future clinical applications in anti-angiogenic therapies.
In vivo inhibition of angiogenesis by htsFLT01/MiRGD nano complex.
htsFLT01/MiRGD纳米复合物对体内血管生成的抑制作用
阅读:3
作者:Khoshandam Mohadeseh, Soheili Zahra-Soheila, Hosseinkhani Saman, Samiee Shahram, Latifi-Navid Hamid, Ahmadieh Hamid, Soltaninejad Hossein, Jahangiri Babak
| 期刊: | Translational Oncology | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Jun;56:102400 |
| doi: | 10.1016/j.tranon.2025.102400 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
