Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions. The HydroTouch test employs gelatin as a finger mimetic, facilitating testing with pathogenic bacteria under controlled conditions. The thermoresponsive sol-gel transition of gelatin allows easy recovery and quantification of bacteria before and after testing. The HydroTouch test demonstrates that methicillin-resistant Staphylococcus aureus has a high transmission efficiency of â16% onto stainless steel, compared to <3% for Escherichia coli or Pseudomonas aeruginosa. Polyurethane surfaces exhibit strong resistance to bacterial contamination with a transmission efficiency of â0.6%, while polytetrafluoroethylene shows a transmission efficiency approximately four times higher than polyurethane. Additionally, quaternary ammonium-based antimicrobial coatings reduce the transmission efficiency of live bacteria on stainless steel to â4% of the original level. The HydroTouch test provides a reliable method for assessing pathogen transmission on various surfaces under semi-dry settings, supporting the development of effective antimicrobial, anti-transmission coatings to reduce healthcare-associated infections.
Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.
利用热响应明胶水凝胶作为手指模拟物,在模拟原位条件下对环境表面微生物传播进行定量评估
阅读:6
作者:Lee Mihyun, Wiesli Luzia, Schreiber Frank, Ivask Angela, Ren Qun
| 期刊: | Advanced Healthcare Materials | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Mar;14(6):e2403790 |
| doi: | 10.1002/adhm.202403790 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
