Eukaryotic initiator tRNA (tRNAi) contains several highly conserved unique sequence features, but their importance in accurate start codon selection was unknown. Here we show that conserved bases throughout tRNAi, from the anticodon stem to acceptor stem, play key roles in ensuring the fidelity of start codon recognition in yeast cells. Substituting the conserved G31:C39 base pair in the anticodon stem with different pairs reduces accuracy (the Sui(-) [suppressor of initiation codon] phenotype), whereas eliminating base pairing increases accuracy (the Ssu(-) [suppressor of Sui(-)] phenotype). The latter defect is fully suppressed by a Sui(-) substitution of T-loop residue A54. These genetic data are paralleled by opposing effects of Sui(-) and Ssu(-) substitutions on the stability of methionylated tRNAi (Met-tRNA(i)) binding (in the ternary complex [TC] with eIF2-GTP) to reconstituted preinitiation complexes (PICs). Disrupting the C3:G70 base pair in the acceptor stem produces a Sui(-) phenotype and also reduces the rate of TC binding to 40S subunits in vitro and in vivo. Both defects are suppressed by an Ssu(-) substitution in eIF1A that stabilizes the open/P(OUT) conformation of the PIC that exists prior to start codon recognition. Our data indicate that these signature sequences of tRNA(i) regulate accuracy by distinct mechanisms, promoting the open/P(OUT) conformation of the PIC (for C3:G70) or destabilizing the closed/P(IN) state (for G31:C39 and A54) that is critical for start codon recognition.
Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon.
酵母起始 tRNA 中的保守残基通过调节起始密码子处的起始前复合物稳定性来校准起始准确性
阅读:4
作者:Dong Jinsheng, Munoz Antonio, Kolitz Sarah E, Saini Adesh K, Chiu Wen-ling, Rahman Hafsa, Lorsch Jon R, Hinnebusch Alan G
| 期刊: | Genes & Development | 影响因子: | 7.700 |
| 时间: | 2014 | 起止号: | 2014 Mar 1; 28(5):502-20 |
| doi: | 10.1101/gad.236547.113 | 种属: | Yeast |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
