Extracellular electrophysiological recordings present unique computational challenges for neuronal classification due to noise, technical variability, and batch effects across experimental systems. We introduce HIPPIE (High-dimensional Interpretation of Physiological Patterns In Extracellular recordings), a deep learning framework that combines self-supervised pretraining on unlabeled datasets with supervised fine-tuning to classify neurons from extracellular recordings. Using conditional convolutional joint autoencoders, HIPPIE learns robust, technology-adjusted representations of waveforms and spiking dynamics. This model can be applied to electrophysiological classification and clustering across diverse biological cultures and technologies. We validated HIPPIE on both in vivo mouse recordings and in vitro brain slices, where it demonstrated superior performance over other unsupervised methods in cell-type discrimination and aligned closely with anatomically defined classes. Its latent space organizes neurons along electrophysiological gradients, while enabling batch and individual corrected alignment of recordings across experiments. HIPPIE establishes a general framework for systematically decoding neuronal diversity in native and engineered systems.
HIPPIE: A Multimodal Deep Learning Model for Electrophysiological Classification of Neurons.
HIPPIE:一种用于神经元电生理分类的多模态深度学习模型
阅读:5
作者:Gonzalez-Ferrer Jesus, Lehrer Julian, Schweiger Hunter E, Geng Jinghui, Hernandez Sebastian, Reyes Francisco, Sevetson Jess L, Salama Sofie R, Teodorescu Mircea, Haussler David, Mostajo-Radji Mohammed A
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Mar 15 |
| doi: | 10.1101/2025.03.14.642461 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
