Chemical Conjugation of Iron Oxide Nanoparticles for the Development of Magnetically Directable Silk Particles.

利用氧化铁纳米粒子的化学偶联技术开发磁性可导向丝素蛋白粒子

阅读:15
作者:Marini Ande X, Tomaraei Golnaz N, Weinbaum Justin S, Bedewy Mostafa, Vorp David A
Magnetically directable materials containing iron oxide nanoparticles (IONPs) have been utilized for a variety of medical applications, including localized drug delivery. Regenerated silk fibroin (RSF) has also been used in numerous regenerative medicine and drug delivery applications, given its biocompatibility and tunable properties. In this work, we explored the hypothesis that chemically conjugating IONPs to RSF to anchor the IONPs to silk microparticles would provide better magnetic guidance than nonconjugated IONPs untethered to silk microparticles. IONPs were fabricated using a coprecipitation method and conjugated with glutathione (GSH) prior to mixing with RSF. IONPs incorporated into RSF were mixed with potassium phosphate buffer to fabricate microparticles. IONPs with and without GSH were characterized for particle size, shape, morphology, GSH conjugation efficiency, and composition. Silk iron microparticles (SIMPs) were also characterized for particle size, shape, and composition and tested for stability, degradation properties, magnetic movability, and cytotoxicity. IONPs demonstrated a uniform size distribution and spherical morphology. Conjugation of IONPs with GSH was verified through changes in the X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) spectra. IONPs and RSF were able to be chemically conjugated and fabricated into SIMPs, which demonstrated a spherical and porous morphology. FTIR revealed an increased β-sheet content in SIMPs, suggesting that the IONPs may be inducing conformational changes in the silk fibroin. SIMPs showed stability up to 4 weeks in ultrapure water and rapid enzymatic degradation within 24 h. SIMPs were able to be moved magnetically through solution and through a hydrogel and were not cytotoxic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。