Phenotypic tolerance for rDNA copy number variation within the natural range of C. elegans.

线虫对rDNA拷贝数变异的表型耐受性在自然范围内

阅读:3
作者:Hall Ashley N, Morton Elizabeth A, Walters Rebecca, Cuperus Josh T, Queitsch Christine
The genes for ribosomal RNA (rRNA) are encoded by ribosomal DNA (rDNA), whose structure is notable for being present in arrays of tens to thousands of tandemly repeated copies in eukaryotic genomes. The exact number of rDNA copies per genome is highly variable within a species, with differences between individuals measuring in potentially hundreds of copies and megabases of DNA. The extent to which natural variation in rDNA copy number impacts whole-organism phenotypes such as fitness and lifespan is poorly understood, in part due to difficulties in manipulating such large and repetitive tracts of DNA even in model organisms. Here, we used the natural resource of copy number variation in C. elegans wild isolates to generate new tools and investigated the phenotypic consequences of this variation. Specifically, we generated a panel of recombinant inbred lines (RILs) using a laboratory strain derivative with ~130 haploid rDNA copies and a wild isolate with ~417 haploid rDNA copies, one of the highest validated C. elegans rDNA copy number arrays. We find that rDNA copy number is stable in the RILs, rejecting prior hypotheses that predicted copy number instability and copy number reversion. To isolate effects of rDNA copy number on phenotype, we produced a series of near isogenic lines (NILs) with rDNA copy numbers representing the high and low end of the rDNA copy number spectrum in C. elegans wild isolates. We find no correlation between rDNA copy number and phenotypes of rRNA abundance, competitive fitness, early life fertility, lifespan, or global transcriptome under standard laboratory conditions. These findings demonstrate a remarkable ability of C. elegans to tolerate substantial variation in a locus critical to fundamental cell function. Our study provides strain resources for future investigations into the boundaries of this tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。