Early fibrin biofilm development in cardiovascular infections.

心血管感染早期纤维蛋白生物膜的形成

阅读:4
作者:Oukrich Safae, Hong Jane, Leon-Grooters Mariël, van Cappellen Wiggert A, Slotman Johan A, Koenderink Gijsje H, van Wamel Willem J B, de Maat Moniek P M, Kooiman Klazina, Lattwein Kirby R
The single most common microbe causing cardiovascular infections is Staphylococcus aureus (S. aureus). S. aureus produces coagulase that converts fibrinogen to fibrin, which is incorporated into biofilms. This process aids in adherence to intravascular structures, defense against the host immune system, and resistance to antimicrobial treatment. Despite its significance, fibrin formation in S. aureus biofilms remains poorly understood. Therefore, this study aimed to elucidate the early development of cardiovascular biofilms. Clinically isolated coagulase-positive S. aureus and coagulase-negative Staphylococcus lugdunensis (S. lugdunensis) from patients with cardiovascular infections, and a coagulase mutant S. aureus Δcoa, were grown in tryptic soy broth (TSB), Iscove's Modified Dulbecco's Medium (IMDM), and pooled human plasma, with or without porcine heart valves. Bacterial growth, metabolic activity, and bacterial fibrinogen utilization were measured over 24 h at 37 °C. Time-lapse confocal microscopy was used to visualize and track biofilm development. S. aureus exhibited more growth in TSB and human plasma than S. lugdunensis and S. aureus Δcoa, but showed similar growth in IMDM after 24 h. Peak metabolic activity for all isolates was highest in TSB and lowest in human plasma. The presence of porcine valves caused strain-dependent alterations in time to peak metabolic activity. Confocal imaging revealed fibrin-based biofilm development exclusively in the coagulase-producing S. aureus strains. Between 2 and 6 h of biofilm development, 74.9 % (p = 0.034) of the fibrinogen from the medium was converted to fibrin. Variations in fibrin network porosity and density were observed among different coagulase-producing S. aureus strains. Fibrin formation is mediated by S. aureus coagulase and first strands occurred within 3 h for clinical strains after exposure to human plasma. This study stresses the importance of experimental design given the bacterial changes due to different media and substrates and provides insights into the early pathogenesis of S. aureus cardiovascular biofilms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。