With the discovery of the persistent jets of water being ejected to space from Enceladus, an understanding of the effect of the space environment on potential organisms and biosignatures in them is necessary for planning life detection missions. We experimentally determine the survivability of microbial cells in liquid medium when ejected into vacuum. Epifluorescence microscopy, using a lipid stain, and SEM imaging were used to interrogate the cellular integrity of E. coli after ejected through a pressurized nozzle into a vacuum chamber. The experimental samples showed a 94% decrease in visible intact E. coli cells but showed a fluorescence residue in the shape of the sublimated droplets that indicated the presence of lipids. The differences in the experimental conditions versus those expected on Enceladus should not change the analog value because the process a sample would undergo when ejected into space was representative. E. coli was selected for testing although other cell types could vary physiologically which would affect their response to a vacuum environment. More testing is needed to determine the dynamic range in concentration of cells expected to survive the plume environment. However, these results suggest that lipids may be directly detectable evidence of life in icy world plumes.
Towards Determining Biosignature Retention in Icy World Plumes.
确定冰世界羽流中生物特征的保留情况
阅读:3
作者:Bywaters Kathryn, Stoker Carol R, Batista Do Nascimento Nelio Jr, Lemke Lawrence
| 期刊: | Life-Basel | 影响因子: | 3.400 |
| 时间: | 2020 | 起止号: | 2020 Apr 16; 10(4):40 |
| doi: | 10.3390/life10040040 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
