INTRODUCTION: Skeletal muscle mitochondria have dynamic shifts in oxidative metabolism to meet energy demands of aerobic exercise. Specific complexes oxidize lipid and nonlipid substrates. It is unclear if aerobic exercise stimulates intrinsic oxidative metabolism of mitochondria or varies between substrates. METHODS: We studied mitochondrial metabolism in sedentary male and female adults (n = 11F/4M) who were free of major medical conditions with mean ± SD age of 28 ± 7 yr, peak aerobic capacity of 2.0 ± 0.4 L·min-1, and body mass index of 22.2 ± 2 kg·m-2. Biopsies were collected from the vastus lateralis muscle on separate study days at rest or 15 min after exercise (1 h cycling at 65% peak aerobic capacity). Isolated mitochondria were analyzed using high-resolution respirometry of separate titration protocols for lipid (palmitoylcarnitine, F-linked) and nonlipid substrates (glutamate-malate, N-linked; succinate S-linked). Titration protocols distinguished between oxidative phosphorylation and leak respiration and included the measurement of reactive oxygen species emission (H2O2). Western blotting determined the protein abundance of electron transfer flavoprotein (ETF) subunits, including inhibitory methylation site on ETF-β. RESULTS: Aerobic exercise induced modest increases in mitochondrial respiration because of increased coupled respiration across F-linked (+13%, P = 0.08), N(S)-linked (+14%, P = 0.09), and N-linked substrates (+17%, P = 0.08). Prior exercise did not change P:O ratio. Electron leak to H2O2 increased 6% increased after exercise (P = 0.06) for lipid substrates but not for nonlipid. The protein abundance of ETF-α or ETF-β subunit or inhibitory methylation on ETF-β was not different between rest and after exercise. CONCLUSION: In sedentary adults, the single bout of moderate-intensity cycling induced modest increases for intrinsic mitochondrial oxidative phosphorylation that was consistent across multiple substrates.
Substrate-Specific Respiration of Isolated Skeletal Muscle Mitochondria after 1 h of Moderate Cycling in Sedentary Adults.
久坐成年人进行中等强度自行车运动 1 小时后,分离的骨骼肌线粒体的底物特异性呼吸作用
阅读:8
作者:Newsom Sean A, Stierwalt Harrison D, Ehrlicher Sarah E, Robinson Matthew M
| 期刊: | Medicine and Science in Sports and Exercise | 影响因子: | 3.900 |
| 时间: | 2021 | 起止号: | 2021 Jul 1; 53(7):1375-1384 |
| doi: | 10.1249/MSS.0000000000002615 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
