Body-Integrated, Enzyme-Triggered Degradable, Silk-Based Mechanical Sensors for Customized Health/Fitness Monitoring and In Situ Treatment

用于定制健康/健身监测和原位治疗的身体集成、酶触发可降解、基于丝绸的机械传感器

阅读:5
作者:Shan Zhang, Zhitao Zhou, Junjie Zhong, Zhifeng Shi, Ying Mao, Tiger H Tao

Abstract

Mechanical signals such as pressure and strain reflect important psychological and physiological states of the human body. Body-integrated sensors, including skin-mounted and surgically implanted ones, allow personalized health monitoring for the general population as well as patients. However, the development of such measuring devices has been hindered by the strict requirements for human-biocompatible materials and the need for high performance sensors; most existing devices or sensors do not meet all the desired specifications. Here, a set of flexible, stretchable, wearable, implantable, and degradable mechanical sensors is reported with excellent mechanical robustness and compliance, outstanding biocompatibility, remotely-triggered degradation, and excellent sensing performance, using a conductive silk fibroin hydrogel (CSFH). They can detect multiple mechanical signals such as pressure, strain, and bending angles. Moreover, combined with a drug-loaded silk-based microneedle array, sensor-equipped devices are shown to be effective for real-time monitoring and in situ treatment of epilepsy in a rodent model. These sensors offer potential applications in custom health monitoring wearables, and in situ treatment of chronic clinical disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。