In Vitro and In Vivo Characterization of Novel Cathelicidin-Based Peptides with Antimicrobial Activity Against Pseudomonas aeruginosa.

体外和体内表征新型抗菌肽对铜绿假单胞菌的抗菌活性

阅读:3
作者:Moreno-Morales Javier, Martín-Vilardell Núria, Guardiola Salvador, Vila-Farrés Xavier, Cebrero Tania, Babić Marko, Ballesté-Delpierre Clara, Kalafatović Daniela, Giralt Ernest, Pachón-Ibañez María Eugenia, Vila Jordi
Background/Objectives: Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa are steadily increasing, thus the discovery and development of new and effective agents are needed. Antimicrobial peptides (AMPs) are a heterogeneous group of innate defense system peptides with broad antimicrobial activity. In this study, 17 AMPs were tested, identifying CAP-18, a cathelicidin-based compound, as the most active. CAP-18 was optimized by synthesizing structural derivatives, which were selected for further studies based on their activity against a collection of MDR and colistin-resistant P. aeruginosa strains. Methods: AMPs collection was initially tested against different P. aeruginosa strains, identifying CAP-18 as the most active. CAP-18 derivatives were synthetized and assessed by the Minimum Inhibitory Concentration (MIC), time-kill kinetics, cytotoxicity against human cell lines, hemolytic activity, and therapeutic index (IC(50)/MIC(90)). The mechanism of action was assessed by Transmission Electron Microscopy (TEM), and in vivo efficacy was determined through a murine skin infection model. Results: CAP-18 and D-CAP-18 had a MIC(90) of 4 and 2 μg/mL, respectively, whereas CAP-18(31) and D-CAP-18(31) presented MIC(90) values of 16 mg/L. The shorter derivatives of CAP-18 showed a lower activity. Time-kill curves revealed a fast bactericidal effect. These derivatives showed low toxicity against different human cell lines and low hemolysis, resulting in a wide therapeutic index (IC(50)/MIC(90)), with D-CAP-18 having the best therapeutic index (137.4). TEM provided insight into the mechanism of action, revealing bacterial membrane damage. In vivo studies of both CAP-18 and D-CAP-18 showed good activity with a 3 log decrease compared to the infected control group. Conclusions: Among the investigated four peptides, D-CAP-18 is the most promising candidate to treat skin infections caused by MDR P. aeruginosa since it shows potent activity both in vitro and in vivo, and a high therapeutic index.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。