Ligand binding induces an ammonia channel in 2-amino-2-desoxyisochorismate (ADIC) synthase PhzE.

配体结合诱导 2-氨基-2-脱氧异绒毛酸 (ADIC) 合酶 PhzE 中的氨通道

阅读:5
作者:Li Qi-Ang, Mavrodi Dmitri V, Thomashow Linda S, Roessle Manfred, Blankenfeldt Wulf
PhzE utilizes chorismate and glutamine to synthesize 2-amino-2-desoxyisochorismate (ADIC) in the first step of phenazine biosynthesis. The PhzE monomer contains both a chorismate-converting menaquinone, siderophore, tryptophan biosynthesis (MST) and a type 1 glutamine amidotransferase (GATase1) domain connected by a 45-residue linker. We present here the crystal structure of PhzE from Burkholderia lata 383 in a ligand-free open and ligand-bound closed conformation at 2.9 and 2.1 Ã resolution, respectively. PhzE arranges in an intertwined dimer such that the GATase1 domain of one chain provides NH(3) to the MST domain of the other. This quaternary structure was confirmed by small angle x-ray scattering. Binding of chorismic acid, which was found converted to benzoate and pyruvate in the MST active centers of the closed form, leads to structural rearrangements that establish an ammonia transport channel approximately 25 Ã in length within each of the two MST/GATase1 functional units of the dimer. The assignment of PhzE as an ADIC synthase was confirmed by mass spectrometric analysis of the product, which was also visualized at 1.9 Ã resolution by trapping in crystals of an inactive mutant of PhzD, an isochorismatase that catalyzes the subsequent step in phenazine biosynthesis. Unlike in some of the related anthranilate synthases, no allosteric inhibition was observed in PhzE. This can be attributed to a tryptophan residue of the protein blocking the potential regulatory site. Additional electron density in the GATase1 active center was identified as zinc, and it was demonstrated that Zn(2+), Mn(2+), and Ni(2+) reduce the activity of PhzE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。