Protein-RNA interactions play pivotal roles in regulating transcription, translation, and RNA metabolism. Characterizing these interactions offers key insights into RNA dysregulation mechanisms. Here, we introduce Reformer, a deep learning model that predicts protein-RNA binding affinity from sequence data. Trained on 225 enhanced cross-linking and immunoprecipitation sequencing (eCLIP-seq) datasets encompassing 155 RNA-binding proteins across three cell lines, Reformer achieves high accuracy in predicting binding affinity at single-base resolution. The model uncovers binding motifs that are often undetectable through traditional eCLIP-seq methods. Notably, the motifs learned by Reformer are shown to correlate with RNA processing functions. Validation via electrophoretic mobility shift assays confirms the model's precision in quantifying the impact of mutations on RNA regulation. In summary, Reformer improves the resolution of RNA-protein interaction predictions and aids in prioritizing mutations that influence RNA regulation.
A deep learning model for characterizing protein-RNA interactions from sequences at single-base resolution.
一种用于从单碱基分辨率序列中表征蛋白质-RNA相互作用的深度学习模型
阅读:10
作者:Shen Xilin, Hou Yayan, Wang Xueer, Zhang Chunyong, Liu Jilei, Shen Hongru, Wang Wei, Yang Yichen, Yang Meng, Li Yang, Zhang Jin, Sun Yan, Chen Kexin, Shi Lei, Li Xiangchun
| 期刊: | Patterns | 影响因子: | 7.400 |
| 时间: | 2025 | 起止号: | 2025 Jan 10; 6(1):101150 |
| doi: | 10.1016/j.patter.2024.101150 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
