Inhibition of Dormant Lung Cancer Cell Reactivation by Punica Granatum Peel and Dioscorea Nipponica: Involving MYC, SKP2 and p27.

石榴皮和日本薯蓣抑制休眠肺癌细胞活化:涉及 MYC、SKP2 和 p27

阅读:8
作者:Hnit Su Su Thae, Bi Ling, Xie Chanlu, Xu Ling, Zhong Yi, Yang Ming, Wang Yan, Dong Qihan
INTRODUCTION: Dormant cancer cells, capable of reactivating from the G(0) phase, drive tumor recurrence and therapy resistance. Current clinical strategies targeting dormancy remain limited. This study evaluates Punica granatum peel (PGP) and Dioscorea Nipponica (DN) for their ability to sustain dormancy in lung cancer cells and inhibit reactivation. METHODS: Dormancy was induced in A549 and H460 lung cancer cells via contact inhibition or serum deprivation. Subcutaneous and orthotopic xenograft mouse models were employed. Cells and mice were treated with PGP, DN, or their combination. SYBR Green assays, flow cytometry, and immunoblotting assessed DNA synthesis, cell cycle phases, and protein expression (p27, SKP2, cMYC, AURORA A, SUPT16H, SSRP1). RESULTS: Both PGP and DN significantly inhibited DNA synthesis and cell cycle re-entry (G(0)-to-G(1) transition) in vitro. In vivo, tumor volume and weight decreased by 26-50% (p < 0.05) in treated mice. Treatments upregulated p27 while downregulating SKP2, cMYC, AURORA A, SUPT16H, and SSRP1. No synergistic effect was observed, but additive efficacy (Combination Index ≈1) was noted at a 10:1 PGP:DN ratio. DISCUSSION: PGP and DN sustain dormancy by modulating key cell cycle regulators, highlighting their potential to reduce recurrence and combat drug resistance. These findings underscore the therapeutic promise of traditional Chinese medicines in managing dormant cancer cells. Future studies should identify active compounds and validate mechanisms in advanced models.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。