mamp-ml: A deep learning approach to epitope immunogenicity in plants.

mamp-ml:一种用于研究植物表位免疫原性的深度学习方法

阅读:3
作者:Stevens Danielle M, Yang David, Liang Tatiana J, Li Tianrun, Vega Brandon, Coaker Gitta L, Krasileva Ksenia
Eukaryotes detect biomolecules through surface-localized receptors, key signaling components. A subset of receptors survey for pathogens, induce immunity, and restrict pathogen growth. Comparative genomics of both hosts and pathogens has unveiled vast sequence variation in receptors and potential ligands, creating an experimental bottleneck. We have developed mamp-ml, a machine learning framework for predicting plant receptor-ligand interactions. We leveraged existing functional data from over two decades of foundational research, together with the large protein language model ESM-2, to build a pipeline and model that predicts immunogenic outcomes using a combination of receptor-ligand features. Our model achieves 73% prediction accuracy on a held-out test set, even when an experimental structure is lacking. Our approach enables high-throughput screening of LRR receptor-ligand combinations and provides a computational framework for engineering plant immune systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。