TRAP1, the mitochondrial isoform of HSP90, has emerged as a key regulator of cancer cell metabolism, yet the mechanisms by which it rewires nutrient utilization remain poorly understood. We previously reported that TRAP1 loss increases glutamine (Gln) dependency of mitochondrial respiration following glucose (Glc) withdrawal. In this study, we investigate how TRAP1 deletion impacts Glc metabolism and the mechanisms enabling Gln retention to support mitochondrial respiration via reductive carboxylation and the oxidative TCA cycle. TRAP1 knockout (KO) in bladder and prostate cancer cells recapitulates the carbon source-specific metabolic rewiring previously observed. Stable isotope tracing reveals that although Glc oxidation remains functional, TRAP1 KO reduces overall Glc uptake and its contribution to glycolysis and the pentose phosphate pathway. This effect is consistent across multiple cell lines. Concurrently, TRAP1-deficient cells exhibit increased Gln retention and reliance, potentially due to downregulation of the cystine/glutamate antiporter SLC7A11/xCT. Supporting this, xCT overexpression reduces Gln-dependent respiration in TRAP1 KO cells. qPCR and proteasome inhibition assays suggest that xCT is regulated posttranslationally via protein stability. Notably, xCT suppression does not trigger ferroptosis, indicating a selective adaptation rather than induction of cell death. Together, our findings suggest that TRAP1 loss decreases Glc uptake while preserving its metabolic fate, promoting Gln conservation through xCT downregulation to maintain mitochondrial respiration without inducing ferroptosis. IMPLICATIONS: These results reveal a TRAP1-dependent mechanism of metabolic rewiring in cancer cells and identify xCT-mediated Gln conservation as a key adaptive response, underscoring TRAP1 as a potential metabolic vulnerability and therapeutic target in tumors with altered nutrient utilization.
Mitochondrial HSP90 Paralog TRAP1 Deletion Drives Glutamine Addiction in Tumor Cells via Destablization of the Cys/Glu Antiporter SLC7A11/xCT
线粒体 HSP90 同源基因 TRAP1 缺失通过破坏 Cys/Glu 反向转运蛋白 SLC7A11/xCT 的稳定性,驱动肿瘤细胞对谷氨酰胺的依赖性
阅读:2
作者:Abhinav Joshi # ,Li Dai # ,Marisa Maisiak ,Sunmin Lee ,Elizabeth Lopez ,Takeshi Ito ,Len Neckers
| 期刊: | Molecular Cancer Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Sep 4;23(9):792-806. |
| doi: | 10.1158/1541-7786.MCR-24-0194 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
