In condensed matter physics, pressure is frequently used to modify the stability of both electronic states and atomic arrangements. Under isotropic pressure, the intermetallic compound MnP has recently attracted attention for the interplay between pressure-induced superconductivity and complicated magnetic order in the vicinity . By contrast, we use uniaxial stress, a directional type of pressure, to investigate the effect on the magnetism and crystal structure of this compound. An irreversible magnetisation response induced by uniaxial stress is discovered in MnP at uniaxial stress as low as [Formula: see text]. Neutron diffraction experiments reveal that uniaxial stress forms crystal domains that satisfy pseudo-rotational symmetry unique to the MnP-type structure. The structure of the coexisting domains accounts for the stress-induced magnetism. We term this first discovered phenomenon atomic reconstruction (AR) induced by uniaxial stress. Furthermore, our calculation results provide guidelines on the search for AR candidates. AR allows crystal domain engineering to control anisotropic properties of materials, including dielectricity, elasticity, electrical conduction, magnetism and superconductivity. A wide-ranging exploration of potential AR candidates would ensure that crystal domain engineering yields unconventional methods to design functional multi-domain materials for a wide variety of purposes.
Atomic reconstruction induced by uniaxial stress in MnP.
MnP中单轴应力诱导的原子重构
阅读:3
作者:Kozawa Tatsuya, Fujihala Masayoshi, Uchihara Takeru, Mitsuda Setsuo, Yano Shin-Ichiro, Tamatsukuri Hiromu, Munakata Koji, Nakao Akiko
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Aug 23; 13(1):13750 |
| doi: | 10.1038/s41598-023-40806-1 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
