Fluorescence labeling strategies for the study of ion channel and receptor cell surface expression: A comprehensive toolkit for extracellular labeling of TRPV1.

用于研究离子通道和受体细胞表面表达的荧光标记策略:TRPV1 细胞外标记的综合工具包

阅读:4
作者:Mott Taylor M, Wulffraat Grace C, Eddins Alex J, Mehl Ryan A, Senning Eric N
Regulation of ion channel expression on the plasma membrane is a major determinant of neuronal excitability, and identifying the underlying mechanisms of this expression is critical to our understanding of neurons. A critical aspect of measuring changes in ion channel expression is uniquely identifying ion channels located on the cell surface. To accomplish this goal we demonstrate two orthogonal strategies to label extracellular sites of the ion channel TRPV1 that minimally perturb the function of the channel: 1) We use the amber codon suppression technique to introduce a non-canonical amino acid (ncAA) with tetrazine click chemistry compatible with a trans-cyclooctene coupled fluorescent dye. 2) By inserting the circularly permutated HaloTag (cpHaloTag) in an extracellular loop of TRPV1, we incorporate a click-chemistry site for a chloroalkane-linked fluorescent dye of our choosing. Optimization of ncAA insertion sites was accomplished by screening residue positions between the S1 and S2 transmembrane domains with elevated missense variants in the human population, and we identified T468 as a rapid labeling site (~5 minutes) based on functional as well as biochemical assays in HEK293T/17 cells. After several rounds of adapting the linker lengths and backbone placement of cpHaloTag on the extracellular side of TRPV1, our efforts led to a channel construct that robustly expressed as a fully functional TRPV1exCellHalo fusion with intact wild-type gating properties. The TRPV1exCellHalo construct was used in a single molecule experiment to track TRPV1 on the cell surface and validate studies that show decreased mobility of the channel upon activation. The success of these extracellular label TRPV1 (exCellTRPV1) constructs as tools to track surface expression of the channel will shed significant light on the mechanisms regulating expression and provide a general scheme to introduce similar modifications to other cell surface receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。