Silencing miR-125b-5p attenuates inflammatory response and apoptosis inhibition in mycobacterium tuberculosis-infected human macrophages by targeting DNA damage-regulated autophagy modulator 2 (DRAM2).

沉默 miR-125b-5p 可靶向 DNA 损伤调节自噬调节因子 2 (DRAM2),从而减弱结核分枝杆菌感染的人类巨噬细胞的炎症反应和凋亡抑制

阅读:3
作者:Liu Guangming, Wan Qiufeng, Li Jingwen, Hu Xinying, Gu Xingli, Xu Sicheng
Tuberculosis is one of the most important infectious diseases worldwide and macrophage apoptosis is the major host defense mechanism against TB. We attempted to characterize the role of miRNA (miR)-125b-5p on mycobacterium tuberculosis (Mtb) infection and macrophages behaviors in vitro. According to fluorescence-activated cell separation (FACS), primary monocytes (CD14(+)) in TB patients were accumulated, and apoptotic monocytes were decreased. Peripheral blood mononuclear cells (PBMCs)-derived macrophages (MDMs) and monocytic cells THP-1-derived macrophage-like cells (TDMs) in vitro were used to be infected with H37Rv. After infection, colony-forming units assay revealed the increase of bacterial activity, FACS demonstrated the decrease of apoptosis rate of MDMs and TDMs, as well as promoted levels of IL-6, TNF-α, Bax, and Bim and suppressed levels of IL-10 and Bcl-2, examined by enzyme-linked immunosorbent assay (ELISA) and western blot assay. Expression of miR-125b-5p and DNA damage-regulated autophagy modulator 2 (DRAM2) was examined, and real-time PCR and western blot assay showed that miR-125b-5p was upregulated, whereas DRAM2 was downregulated in primary monocytes and H37Rv-infected macrophages (MDMs and TDMs). Moreover, blocking miR-125b-5p could attenuated H37Rv-induced bacterial activity and inflammatory response of MDMs and TDMs, accompanied with apoptosis inhibition. Whereas these effects of miR-125b-5p knockdown were abolished by downregulating DRAM2. In mechanism, DRAM2 was a downstream target of miR-125b-5p, as evidenced by dual-luciferase reporter assay. Collectively, silencing miR-125b-5p could protect human macrophages against Mtb infection through promoting apoptosis and inhibiting inflammatory response via targeting DRAM2, suggesting a novel target for Mtb eliminating. Abbreviations: TB: tuberculosis; PBMCs: peripheral blood mononuclear cells; Mtb: mycobacterium tuberculosis; AFB: acid fast bacilli; FITC: fluorescein isothiocyanate; MDMs: monocytes-derived macrophages; TDMs: THP-1-derived macrophage-like cells; ERFP: Mtb-enhanced red fluorescent protein; CFU: colony-forming units; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell separation; PI: propidium iodide; DRAM2: DNA damage-regulated autophagy modulator 2; Real-time PCR: real-time polymerase chain reaction; in-miR-125b-5p: miR-125b-5p inhibitor; si-DRAM2: siRNA against DRAM2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。