Evidence that anti-inflammatory and other biological effects of curcumin may at least in part be mediated by its metabolites underscores the importance of identifying novel transformation products. Spontaneous degradation of curcumin in buffer pH 7.5 results mainly in dioxygenated products with a characteristic cyclopentadione ring composed of carbons 2 through 6 of the former heptadienedione chain. When analyzing degradation reactions of 4'- O-methylcurcumin, a product was identified missing one of the terminal carbons of the heptadienedione moiety while containing a cyclopentadione ring and adjacent hydroxy group typical of curcumin degradation products. Analysis of curcumin autoxidation reactions showed formation of an analogous compound, 7-norcyclopentadione, a degradation product exhibiting net loss of a carbon and gain of an oxygen atom. Removal of the carbon is proposed to occur via a peroxide-linked curcumin dimer in conjunction with radical-mediated 1,2-aryl migration of a guaiacol moiety. Oxidation reactions of demethoxycurcumin gave demethoxy-7-norcyclopentadione, whereas an analogous product was not observed from bis-demethoxycurcumin. Incubation of RAW264.7 macrophage-like cells with curcumin showed the presence of 7-norcyclopentadione, the formation of which was not increased upon activation of the cells with 12- O-tetradecanoylphorbol-13-acetate . 7-Norcyclopentadione is a novel type of degradation product that is most likely formed via autoxidative processes when cells are incubated with curcumin.
A Curcumin Degradation Product, 7-Norcyclopentadione, Formed by Aryl Migration and Loss of a Carbon from the Heptadienedione Chain.
姜黄素降解产物 7-去甲环戊二酮,由芳基迁移和庚二烯二酮链失去一个碳原子形成
阅读:6
作者:Joseph Akil I, Luis Paula B, Schneider Claus
| 期刊: | Journal of Natural Products | 影响因子: | 3.600 |
| 时间: | 2018 | 起止号: | 2018 Dec 28; 81(12):2756-2762 |
| doi: | 10.1021/acs.jnatprod.8b00822 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
