Despite decades of pharmacological studies, how the ubiquitous cytoskeletal actin regulates synaptic transmission remains poorly understood. We addressed this issue with a tissue-specific knockout of actin β-isoform or γ-isoform, combined with recordings of postsynaptic EPSCs, presynaptic capacitance jumps or fluorescent synaptophysin-pHluorin changes, and electron microscopy in large calyx-type and small conventional hippocampal synapses. We found that actin restrains basal synaptic transmission during single action potential firings by lowering the readily releasable vesicle's release probability. Such an inhibition of basal synaptic transmission is turned into facilitation during repetitive firings by slowing down depletion of the readily releasable vesicle pool and, thus, short-term synaptic depression, leading to more effective synaptic transmission for a longer time. These mechanisms, together with the previous finding that actin promotes vesicle replenishment to the readily releasable pool, may control synaptic transmission and short-term synaptic plasticity at many synapses, contributing to neurological disorders caused by actin cytoskeleton impairment.
Actin maintains synaptic transmission by restraining vesicle release probability.
肌动蛋白通过限制囊泡释放概率来维持突触传递
阅读:5
作者:Wu Xin-Sheng, Zhang Zhen, Jin Yinghui, Mushtaheed Afreen, Wu Ling-Gang
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 14; 28(3):112000 |
| doi: | 10.1016/j.isci.2025.112000 | 研究方向: | 免疫/内分泌 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
