Actin maintains synaptic transmission by restraining vesicle release probability.

肌动蛋白通过限制囊泡释放概率来维持突触传递

阅读:13
作者:Wu Xin-Sheng, Zhang Zhen, Jin Yinghui, Mushtaheed Afreen, Wu Ling-Gang
Despite decades of pharmacological studies, how the ubiquitous cytoskeletal actin regulates synaptic transmission remains poorly understood. We addressed this issue with a tissue-specific knockout of actin β-isoform or γ-isoform, combined with recordings of postsynaptic EPSCs, presynaptic capacitance jumps or fluorescent synaptophysin-pHluorin changes, and electron microscopy in large calyx-type and small conventional hippocampal synapses. We found that actin restrains basal synaptic transmission during single action potential firings by lowering the readily releasable vesicle's release probability. Such an inhibition of basal synaptic transmission is turned into facilitation during repetitive firings by slowing down depletion of the readily releasable vesicle pool and, thus, short-term synaptic depression, leading to more effective synaptic transmission for a longer time. These mechanisms, together with the previous finding that actin promotes vesicle replenishment to the readily releasable pool, may control synaptic transmission and short-term synaptic plasticity at many synapses, contributing to neurological disorders caused by actin cytoskeleton impairment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。