Current understanding of cell regulatory systems suggests a diverse array of extracellular stimuli commonly recruit a limited cadre of core signal transduction modules to drive discrete stimulus-specific responses. One such module is the Raf-MEK-extracellular signal-regulated kinase (ERK) kinase cascade. Little information exists about how this pathway can be appropriately coupled to discrete cell biological processes. Contributing factors may include regulation of the duration, amplitude, and/or subcellular compartmentalization of active ERK1/2. To define properties of ERK1/2 that may help mediate stimulus-selective signal propagation, we have examined the dynamic behavior of native ERK1/2 activation at the single-cell level. In primary human cell cultures, ERK1/2 activation is not an all-or-none response. Instead, the amount of active ERK1/2 in individual cells accumulated in proportion to the concentration of external stimulus. The variable degree of ERK1/2 activation correlated well with the degree of ERK1/2 effector activation. Therefore, the relative amplitude of ERK1/2 activation within a cell can be modulated and may contribute to the generation of stimulus-specific biological responses. Importantly, we also found that the capacity of active ERK1/2 to accumulate in the nucleus and drive immediate-early gene expression is dependent upon the nature of the inductive signal, but independent of the amplitude of ERK1/2 activation. Therefore, nuclear accumulation of active ERK1/2 is a discrete regulated step that can direct the function of the kinase in response to specific stimuli.
Stimulus-coupled spatial restriction of extracellular signal-regulated kinase 1/2 activity contributes to the specificity of signal-response pathways.
刺激耦合的细胞外信号调节激酶 1/2 活性的空间限制有助于信号反应通路的特异性
阅读:3
作者:Whitehurst Angelique, Cobb Melanie H, White Michael A
| 期刊: | Molecular and Cellular Biology | 影响因子: | 2.700 |
| 时间: | 2004 | 起止号: | 2004 Dec;24(23):10145-50 |
| doi: | 10.1128/MCB.24.23.10145-10150.2004 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
