Human mutations highlight an intersubunit cation-π bond that stabilizes the closed but not open or inactivated states of TRPV channels.

人类突变突显了亚基间阳离子-I键,该键稳定了TRPV通道的关闭状态,但不能稳定其开放或失活状态

阅读:3
作者:Teng Jinfeng, Anishkin Andriy, Kung Ching, Blount Paul
An adequate response of a living cell to the ever-changing environment requires integration of numerous sensory inputs. In many cases, it can be achieved even at the level of a single receptor molecule. Polymodal transient receptor potential (TRP) channels have been shown to integrate mechanical, chemical, electric, and thermal stimuli. Inappropriate gating can lead to pathologies. Among the >60 known TRP vanilloid subfamily (V) 4 mutations that interfere with bone development are Y602C or R616Q at the S4-S5 linker. A cation-π bond between the conservative residues Y602 and R616 of neighboring subunits appears likely in many homologous channel structures in a closed state. Our experiments with TRPV4 mutants indicate that the resting-closed state remains stable while the bond is substituted by a salt bridge or disulfide bond, whereas disruption of the contact by mutations like Y602C or R616Q produces gain-of-function phenotypes when TRPV4 is heterologously expressed in the Xenopus oocyte or yeast. Our data indicate that the Y602-R616 cation-π interactions link the four S4-S5 linker helices together, forming a girdle backing the closed gate. Analogous cation-π bonds and the girdle are seen in many closed TRP channel structures. This girdle is not observed in the cryo-EM structure of amphibian TRPV4 (Protein Data Bank ID code 6BBJ), which appears to be in a different impermeable state-we hypothesize this is the inactivated state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。