Fibroblast growth factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis.

成纤维细胞生长因子受体控制着肺泡弹性蛋白生成所必需的上皮-间质相互作用

阅读:7
作者:Srisuma Sorachai, Bhattacharya Soumyaroop, Simon Dawn M, Solleti Siva K, Tyagi Shivraj, Starcher Barry, Mariani Thomas J
RATIONALE: The mechanisms contributing to alveolar formation are poorly understood. A better understanding of these processes will improve efforts to ameliorate lung disease of the newborn and promote alveolar repair in the adult. Previous studies have identified impaired alveogenesis in mice bearing compound mutations of fibroblast growth factor (FGF) receptors (FGFRs) 3 and 4, indicating that these receptors cooperatively promote postnatal alveolar formation. OBJECTIVES: To determine the molecular and cellular mechanisms of FGF-mediated alveolar formation. METHODS: Compound FGFR3/FGFR4-deficient mice were assessed for temporal changes in lung growth, airspace morphometry, and genome-wide expression. Observed gene expression changes were validated using quantitative real-time RT-PCR, tissue biochemistry, histochemistry, and ELISA. Autocrine and paracrine regulatory mechanisms were investigated using isolated lung mesenchymal cells and type II pneumocytes. MEASUREMENTS AND MAIN RESULTS: Quantitative analysis of airspace ontogeny confirmed a failure of secondary crest elongation in compound mutant mice. Genome-wide expression profiling identified molecular alterations in these mice involving aberrant expression of numerous extracellular matrix molecules. Biochemical and histochemical analysis confirmed changes in elastic fiber gene expression resulted in temporal increases in elastin deposition with the loss of typical spatial restriction. No abnormalities in elastic fiber gene expression were observed in isolated mesenchymal cells, indicating that abnormal elastogenesis in compound mutant mice is not cell autonomous. Increased expression of paracrine factors, including insulin-like growth factor-1, in freshly-isolated type II pneumocytes indicated that these cells contribute to the observed pathology. CONCLUSIONS: Epithelial/mesenchymal signaling mechanisms appear to contribute to FGFR-dependent alveolar elastogenesis and proper airspace formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。