Use of Atrial Fibrillation Electrograms and T1/T2 Magnetic Resonance Imaging to Define the Progressive Nature of Molecular and Structural Remodeling: A New Paradigm Underlying the Emergence of Persistent Atrial Fibrillation.

利用心房颤动电图和 T1/T2 磁共振成像来定义分子和结构重塑的渐进性:持续性心房颤动出现的新范式

阅读:4
作者:Rottmann Markus, Yoo Shin, Pfenniger Anna, Mikhailov Aleksei, Benefield Brandon, Johnson David A, Zhang Wenwei, Ghosh Asish K, Kim Daniel, Passman Rod, Knight Bradley P, Lee Daniel C, Arora Rishi
BACKGROUND: The temporal progression states of the molecular and structural substrate in atrial fibrillation (AF) are not well understood. We hypothesized that these can be detected by AF electrograms and magnetic resonance imaging parametric mapping. METHODS AND RESULTS: AF was induced in 43 dogs (25-35 kg, ≥1 year) by rapid atrial pacing (RAP) (3-33 weeks, 600 beats/min), and 4 controls were used. We performed high-resolution epicardial mapping (UnEmap, 6 atrial regions, both atria, 130 electrodes, distance 2.5 mm) and analyzed electrogram cycle length, dominant frequency, organization index, and peak-to-peak bipolar voltage. Implantable telemetry recordings were used to quantify parasympathetic nerve activity over RAP time. Magnetic resonance imaging native T1, postcontrast T1, T2 mapping, and extracellular volume fraction were assessed (1.5T, Siemens) at baseline and AF. In explanted atrial tissue, DNA oxidative damage (8-hydroxy-2'-deoxyguanosine staining) and percentage of fibrofatty tissue were quantified. Cycle length and organization index decreased (R=0.5, P<0.05; and R=0.5, P<0.05; respectively), and dominant frequency increased (R=0.3, P n.s.) until 80 days of RAP but not thereafter. In contrast, voltage continued to decrease throughout the duration of RAP (R=0.6, P<0.05). Parasympathetic nerve activity increased following RAP and plateaued at 80 days. Magnetic resonance imaging native T1 and T2 times increased with RAP days (R=0.5, P<0.05; R=0.6, P<0.05) in the posterior left atrium throughout RAP. Increased RAP days correlated with increasing 8-hydroxy-2'-deoxyguanosine levels and with fibrosis percentage (R=0.5, P<0.05 for both). CONCLUSIONS: A combination of AF electrogram characteristics and T1/T2 magnetic resonance imaging can detect early-stage AF remodeling (autonomic remodeling, oxidative stress) and advanced AF remodeling due to oxidative stress and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。