Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.

利用光热纳米刀片进行线粒体转移可恢复哺乳动物细胞的代谢谱

阅读:4
作者:Wu Ting-Hsiang, Sagullo Enrico, Case Dana, Zheng Xin, Li Yanjing, Hong Jason S, TeSlaa Tara, Patananan Alexander N, McCaffery J Michael, Niazi Kayvan, Braas Daniel, Koehler Carla M, Graeber Thomas G, Chiou Pei-Yu, Teitell Michael A
mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。