In the last decade, multiple lines of transgenic APP overexpressing mice have been created that recapitulate certain aspects of Alzheimer's disease (AD). However, none of the previously reported transgenic APP overexpressing rat models developed AD-like beta-amyloid (Abeta) deposits, or age-related learning and memory deficits. In the present study, we have characterized a transgenic rat model overexpressing transgenes with three, familial AD mutations (two in APP and one in PS1) that were developed by Flood et al. [Flood, D.G., et al., Abeta deposition in a transgenic rat model of Alzheimer's disease. Society for Neuroscience 2003, Washington, DC, 2003]. From the age of 9 months, these rats develop Abeta deposits in both diffuse and compact forms, with the latter being closely associated with activated microglia and reactive astrocytes. Impaired long-term potentiation (LTP) was revealed by electrophysiological recordings performed on hippocampal slices from rats at 7 months of age, which is 2 months before the appearance of amyloid plaques. The deficit in LTP was accompanied by impaired spatial learning and memory in the Morris water maze, which became more pronounced in transgenic rats of 13 months of age. For Tg rats of both ages, there was a trend for cognitive impairment to correlate with total Abeta42 levels in the hippocampus. The rat model therefore recapitulates AD-like amyloid pathology and cognitive impairment. The advantage of the rat model over the available mouse models is that rats provide better opportunities for advanced studies, such as serial CSF sampling, electrophysiology, neuroimaging, cell-based transplant manipulations, and complex behavioral testing.
A transgenic rat that develops Alzheimer's disease-like amyloid pathology, deficits in synaptic plasticity and cognitive impairment.
一种转基因大鼠,会出现类似阿尔茨海默病的淀粉样蛋白病理、突触可塑性缺陷和认知障碍
阅读:4
作者:Liu Li, Orozco Ian J, Planel Emmanuel, Wen Yi, Bretteville Alexis, Krishnamurthy Pavan, Wang Lili, Herman Mathieu, Figueroa Helen, Yu W Haung, Arancio Ottavio, Duff Karen
| 期刊: | Neurobiology of Disease | 影响因子: | 5.600 |
| 时间: | 2008 | 起止号: | 2008 Jul;31(1):46-57 |
| doi: | 10.1016/j.nbd.2008.03.005 | 种属: | Rat |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
