Repeated Restraint Stress Led to Cognitive Dysfunction by NMDA Receptor-Mediated Hippocampal CA3 Dendritic Spine Impairments in Juvenile Sprague-Dawley Rats.

反复束缚应激导致幼年 Sprague-Dawley 大鼠海马 CA3 树突棘 NMDA 受体介导损伤,进而引起认知功能障碍

阅读:3
作者:Sun Dong-Sheng, Zhong Gang, Cao Hong-Xia, Hu Yu, Hong Xiao-Yue, Li Ting, Li Xiao, Liu Qian, Wang Qun, Ke Dan, Liu Gong-Ping, Ma Rong-Hong, Luo Dan-Ju
Although numerous studies have indicated that chronic stress causes cognitive dysfunction with the impairment of synaptic structures and functions, the relationship between cognitive deficits induced by repeated restraint stress and the level of NMDA receptors in the subregion of the hippocampus has been relatively unknown until now. In this study, 3-week-old male Sprague-Dawley rats were exposed to repeated restraint stress for seven consecutive days, their cognitive functions were evaluated through behavioral tests, and then they were sacrificed for electrophysiological, morphological, and biochemical assays. Chronic repeated restraint stress led to cognitive and electrophysiological impairments, with a reduced density of dendritic spines. We also found that the protein level of NMDA receptors only increased in the hippocampal CA3 region. Nevertheless, repeated restraint stress-induced cognitive and synaptic dysfunction were effectively reversed by Ro25-6981, an inhibitor of the GluN2B receptor. These findings suggest that repeated restraint stress-induced synaptic and cognitive deficits are probably mediated through NMDA receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。